Ряды динамики и распределения


главная страница Рефераты Курсовые работы текст файлы добавьте реферат (спасибо :)Продать работу

поиск рефератов

Контрольная работа на тему Ряды динамики и распределения

скачать
похожие рефераты
подобные качественные рефераты

Размер: 147.6 кб.
Язык: русский
Разместил (а): Крик
01.05.2011
1 2 3    

Задача 1




Динамика выпуска продукции (млн. условных единиц) представлена в табл. 1.
Таблица 1

Годы



Выпуск продукции, млн. усл. ед.

1

926

2

961

3

938

4

974

5

965

6

983

7

1015

8

1068

9

1122



1. Построить ряд динамики. Изобразить ряд в виде линейного графика. Сделать вывод о наличии тенденции изменения уровня и о ее характере (увеличение уровня, снижение уровня, переломы тенденции, периоды одинакового типа тенденции).

Из графика видно, что тенденция изменения уровня имеет характер увеличения выпуска продукции в зависимости от года. В третьем году наблюдался перелом кривой выпуска (снижение).

2. Рассчитать среднюю хронологическую (ряд динамики интервальный). При разном направлении изменения уровней выделить однородные по тенденции периоды и рассчитать частные хронологические.

3. Рассчитать систему производных показателей ряда динамики (абсолютные приросты, темпы роста и прироста, абсолютные значения одного процента прироста).

4. Показать взаимосвязь цепных и базисных темпов роста и прироста.

Средний уровень динамического ряда рассчитаем как среднюю хронологическую простую:
ycp=∑yi/n=8952/9 = 994,66
Рассчитать средний абсолютный прирост. При разном направлении изменения уровней выделить однородные по тенденции периоды и рассчитать частные средние абсолютные приросты.

Абсолютные приросты цепные и базисные:
цепной=yi yi-1; ∆базисн=yiy0
Темпы роста цепные и базисные:
Тцепной =100*yi / yi-1; Тбазисн=100*yi / y0
Темпы прироста цепные и базисные:
∆Тцепной =100*∆цепной / yi-1 = Тцепной – 100;

∆Тбазисн=100*∆базисн / y0= Тбазисн – 100
Абсолютное содержание 1% прироста:


А=∆цепной /∆Тцепной= yi-1/100
Средний абсолютный прирост:
yср=∑∆цепные/(n-1)=196/8 = 24,5
5. Рассчитать средний темп роста (три методики расчета). При разном направлении изменения уровней выделить однородные по тенденции периоды и рассчитать частные средние темпы роста.

Средний темп роста:
Трср=100 * (yконеч/ yнач)1/8=100 * (1122/926) 1/8= 1,21170,125 * 100 = 102,04
Средний темп прироста:
Т∆сррср-100=102,04–100 = 2,04
6. Проанализировать тенденцию изменения уровня, самостоятельно избрав метод (скользящий средний уровень, аналитическое выравнивание по соответствующей модели). Выровненные значения показать на графике.
Y = a + bt



 где n – численность совокупности (в данном случае n =9).

, , в данном случае

а = 8952/9 = 994,67 млн. ед.

b = 1223/60= 20,38 млн. ед.


Уравнение тренда: y = 994,67 + 20,38 t.

Выбираем модель изменения уровня – аналитическое выравнивание. Расчет приведен в таблице. Выровненные значения показаны на графике.

7. Проанализировать сезонные колебания объема выпуска продукции за три года. Рассчитать индекс сезонности. На графике изобразить сезонную волну.

Индексы сезонности показывают, во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня, вычисляемого по уравнению тенденции f(t). При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет. Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года. Индексы сезонности – это, по либо уровень существу, относительные величины координации, когда за базу сравнения принят либо средний уровень ряда, либо уровень тенденции.

Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции.

При наличии тренда индекс сезонности определяется на основе методов, исключающих влияние тенденции. Порядок расчета следующий:

·                    для каждого уровня определяют выровненные значения по тренду f(t);

·                    рассчитывают отношения ;

при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле:
, (Т – число лет).
i1 = 926/912,48 =1,01

i2 = 961/932,86 = 1,03

i3 = 938 / 953,24 = 0,98

i4 = 974/973,62 = 1,00

i5 = 965/994 = 0,97

i6 = 983/1014,38 = 0,97

i7 = 1015/1034,76 = 0,98

i8 = 1068 / 1055,14 = 1,01

i9 = 1122 / 1075,52 = 1,04

График сезонной волны приведен на рисунке:


Расчет приведен в табл.


Задача 2

В табл. 2 представлено распределение покупателей по группам.



Стоимость покупки, р

Количество покупателей

До 8



14

8–16



26

16–24



43

24–32



21

32 – 40



12

40–48



9

48 и более



3

Итого







1. Построить ряд распределения. Изобразить ряд графически в виде гистограммы (полигона) и кумуляты распределения. Сделать вывод о характере распределения.


Рисунок – Кумулята распределения






Рисунок – Кумулята распределения


Рисунок – Полигон распределения


Рисунок – Полигон распределения
2. Рассчитать моду, медиану, первый и третий квартиль, средний уровень признака в совокупности; сравнить значение моды, медианы, средней и сделать вывод об асимметрии распределения. Рассчитать отклонение вариации: размах вариации, среднее линейное отклонение, дисперсию, среднее квадратичное отклонение, коэффициент вариации.

Первая квартиль (Q1) – значение признака у единицы, делящей ранжированный ряд в соотношении 1/4 и ѕ, вторая квартиль равна медиане (Q2 = Ме), Третья квартиль (Q3) – значение признака у единицы, делящей ранжированный ряд в соотношении3/4 и 1/4. Порядковый номер Q1 определяется как ∑ f
/ 4, для Q3 – соответственно как 3/4∑ f


Таким образом, первый квартиль равен:

Q1 = 128/4 = 32

Q3 = ѕ *128 =96

Определяем показатель размаха вариации:

R = 48 – 8 = 40

Этот показатель улавливает только крайние отклонения и не отражает отклонений всех вариант в ряду.
xср= ∑хi* mi/ ∑mi=2800/128 = 21,875
Чтобы дать обобщающую характеристику распределению отклонений, исчисляют среднее линейное отклонение l, которое учитывает различие всех единиц изучаемой совокупности. Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:
.
l= 12,75/128 = 0,099

Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины.


 = 0,099/21,875= 0,455%
Дисперсия определяется следующим образом:
σ2=∑(xixcp)2* mi / ∑mi=17469,28/128=136,478
Среднее квадратичное отклонение равно:
σ= √σ2=√136,478=11,68
Коэффициент вариации:
V= 100%*σ/ xср=100*11,68/21,875 = 53,405%
Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней = 40/21,875 *100 = 182,85%

Определим дисперсию другим методом:
136,478
Дисперсия может быть определена методом условных моментов. Момент распределения – это средняя m отклонений значений признака от какой-либо величины А: если А = 0, то момент называется начальным; если А = , то моменты – центральными; если А = С, то моменты – условными.

В зависимости от показателя степени К, в которую возведены отклонения (х – А)к, моменты называются моментами 1-го, 2-го и т.д. порядков.

Расчет дисперсии методом условных моментов состоит в следующем:

1.          Выбор условного нуля С;

2.          Преобразование фактических значений признака х в упрощенные хґ путем отсчета от условного нуля С и уменьшения в d раз:

3.          Расчет 1-го условного момента:

4.          Расчет 2-го условного момента:

5.          Расчет 1-го порядка начального момента:

6.          Дисперсии

В качестве условного момента выбираем С=1, d = 2



Центральное значение интервала, хi





*f

()2*f

4

14

1,5

21

31,5

12

40

5,5

220

1210

20

83

9,5

788,5

7490,75

28

104

13,5

1404

18954

36

116

17,5

2030

35525

44

125

21,5

2687,5

57781,25

52

128

25,5

3264

83232

196



94,5

10415

204224,5



Расчет 1-го условного момента:




= 10415/610 = 17,07

Расчет 2-го условного момента:


= 334,79
Расчет 1-го порядка начального момента: = 17,07*0,099+1 = 2,69

Расчет дисперсии:
 = 22 (334,79 – 17,072) = 136,48
Модальный размер среднего размера покупки:
Мо=x0+h*(m2m1)/((m2m1)+(m2m3))
Модальный интервал (16–24), т. к. mmax=43

Мо =16+8*(43–26)/((43–26)+(43+21))=17,67

Медианный размер покупки:
Ме= x0+h*(1/2*∑mi-Sдо Ме)/mмед.инт


mi/2=128/2=64 – середина ряда.

Она попадает в медианный интервал (16–24).

Ме=16 +8*(1/2*128–40)/43= 20,46

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если M0<Me< имеет место правосторонняя асимметрия. Если же <Me<M0 – левосторонняя асимметрия ряда.

В данном случае M0<Me<, т.е. 17,67 <20,46< 21,87, следовательно, имеет место правосторонняя асимметрия.

3. Указать другие методы расчета среднего уровня и дисперсии.

Виды степенных средних и методы их расчета приведены в табл.



Вид степенной
средней


Показатель
степени (m)


Формула расчета

Простая

Взвешенная

Гармоническая

-1





Геометрическая

0





Арифметическая

1





Квадратическая

2





Кубическая

3







Показать методику расчета дисперсии альтернативного признака.

Альтернативный признак принимает только 2 значения (1 и 0) с весами р и q соответственно.

Среднее значение альтернативного признака:



Назвать виды дисперсий в совокупности, разбитой на группы, сформулировать правило их сложения и методику расчета показателя тесноты связи между изучаемыми признаками.

Различают: общую дисперсию; межгрупповую дисперсию; внутригрупповую дисперсию; среднюю из внутригрупповых дисперсий.

Общая дисперсия (σ 2) измеряет вариацию признака во всей исследуемой совокупности, под влиянием всех факторов, обусловивших эту вариацию

Межгрупповая дисперсия (d 2) характеризует систематическую вариацию, то есть различия в величине изучаемого признака, возникающие под влиянием признака-фактора, который положен в основание группировки:

Внутригрупповая дисперсия (s I2) отражает случайную вариацию, то есть часть общей вариации, происходящей под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки:

Средняя из внутригрупповых дисперсий (s I2) рассчитывается по следующей формуле:

Существует закон, связывающий три вида дисперсий: общая дисперсия равна сумме из внутригрупповых и межгрупповых дисперсий, то есть:
s 2 = s I2+d 2


Логика этого закона проста: общая дисперсия, возникающая под воздействием всех факторов, должна быть равна сумме дисперсий, возникающих под влиянием всех прочих факторов, и дисперсии, возникающей за счет факторов группировки.

Три направления использования закона трех дисперсий:

o                     зная любые два вида дисперсий, всегда можно найти или проверить правильность расчета третьего вида;

o                     можно оценить удельное значение фактора, лежащего в основе группировки, во всей совокупности факторов, воздействующих на группировочный признак. Для этого исчисляется коэффициент детерминации h 2 по формуле:

h 2 показывает долю общей вариации изучаемого признака, обусловленную вариацией группировочного признака;

o                     можно определить показатель тесноты связи результативного и группировочного (факторного) признаков посредством исчисления эмпирического корреляционного отношения: h Э:

Оно имеет следующие пределы: 0 < h Э < 1

Если h Э = 0, то группировочный признак не влияет на результативный (связь между ними отсутствует). Если же h Э = 1, то результативный признак изменяется только в зависимости от группировочного признака (между ними существует функциональная связь).

Закон сложения трех видов дисперсий используется в дисперсионном анализе.


    продолжение
1 2 3    

Добавить контрольную работу в свой блог или сайт
загрузка...
Удобная ссылка:

Скачать контрольную работу бесплатно
подобрать список литературы


Ряды динамики и распределения


Постоянный url этой страницы:
Контрольная работа Ряды динамики и распределения


Разместите кнопку на своём сайте:
Рефераты
вверх страницы


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.