Методика изучения элементов математического моделирования в курсе математики 5-6 классов

Загрузка...

главная страница Рефераты Курсовые работы текст файлы добавьте реферат (спасибо :)Продать работу

поиск рефератов

Диплом на тему Методика изучения элементов математического моделирования в курсе математики 5-6 классов

скачать
похожие рефераты • Точное совпадение: 2 реферата
подобные качественные рефераты

Размер: 233.52 кб.
Язык: русский
Разместил (а): Беляева
27.11.2010
1 2 3 4 5 6 7 8    
Содержание
  Введение
Глава 1. Теоретические основы математического моделирования
1.1. Понятие модели. Моделирование. Классификация моделей и виды моделирования
1.2. Математическая модель. Математическое моделирование
1.3. Математическое моделирование в школе
1.4. Функции и цели обучения математическому моделированию в школе
1.5. Роль изучения элементов математического моделирования в курсе математики 5-6 классов
Выводы по главе 1
Глава 2. Обучение школьников элементам математического моделирования
2.1. Обзор школьных учебников по математике для 5-6 классов с точки зрения наличия элементов математического моделирования
2.2. Методика обучения математическому моделированию по учебникам Дорофеева Г. В., Петерсон Л. Г. «Математика-5», «Математика-6»
2.3. Анализ учебников Г. В. Дорофеева, Л. Г. Петерсон «Математика-5»,  «Математика-6» с точки зрения наличия задач для формирования умений, характерных для математического моделирования
2.4. Опытное преподавание
Выводы по главе 2
Заключение
Библиографический список
Приложения


         Введение

Проблема модернизации образования в настоящее время широко обсуждается в теории и практике, особенно с позиции активизации творческой познавательной деятельности учащихся. Активизация познавательной деятельности учащихся – один из дидактических принципов, роль которого существенно возросла в условиях развивающего обучения. Проблема активизации включает в себя средства для осуществления такой деятельности.
Моделирование - важный метод научного познания и сильное средство активизации учащихся в обучении.
Отмечается, что одной из составляющих математического образования является новое представление о предмете математики. В основе содержания школьных учебников должно быть предусмотрено создание и разработка схем, моделей и их вариантов, создание моделей по известным схемам, приложение уже разработанных схем непосредственно в обучении. Для того чтобы лучше увидеть общие черты усваиваемого действия, надо отвлечься от ненужных в данном случае свойств предметов, а это и значит, что нужно перейти к действию с моделями, свободными от всех других свойств, кроме нужных в данном случае.
К основным целям обучения математике относится формирование умений строить математические модели простейших реальных явлений, исследовать явления по заданным моделям, конструировать приложения моделей; приобщение учащихся к опыту творческой деятельности и формирование у них умения применять его.
Но очевидно, что такие умения должны начинать формироваться не в 8 – 11 классах, а значительно раньше, уже в 5 – 6 классах, для чего могут быть использованы сюжетные задачи, описывающие реальную или приближенную к реальной ситуацию на неформально-математическом языке. В основе решения сюжетных задач лежит математическое моделирование, поэтому необходимо организовать обучение элементам моделирования уже на ранних этапах обучения, а именно в 5 – 6 классах, когда имеется возможность дополнительно предлагать учащимся такие задачи, целенаправленно способствующие развитию определенных сторон мышления.
С учетом вышеизложенного для исследования была выбрана тема «Методика изучения элементов математического моделирования в курсе математики 5 - 6 классов (на примере учебников Г. В. Дорофеева, Л. Г. Петерсон)».
Объект исследования – процесс обучения математике в 5 – 6 классах.
Предмет исследования – обучение учащихся 5 – 6 классов элементам математического моделирования.
Цель работы – рассмотреть основные вопросы и проблемы обучения элементам математического моделирования в 5 – 6 классах и разработать методику изучения элементов математического моделирования на основе учебников «Математика» для 5 – 6 классов авторов Г. В. Дорофеева, Л. Г. Петерсон.
Гипотеза: изучение математического моделирования на ранних этапах обучения, а именно в 5 – 6 классах средней школы делает процесс обучения математике более эффективным и осмысленным, а также способствует формированию у школьников диалектико-материалистического мировоззрения,  умения проводить рациональные рассуждения.
Предмет, цель и гипотеза исследования определяют следующие задачи:
1)     дать понятие математической модели, раскрыть суть метода математического моделирования;
2)     определить основные функции и цели обучения математическому моделированию в школе;
3)     обосновать роль изучения элементов математического моделирования в курсе математики 5-6 классов;
4)     описать методику обучения школьников элементам математического моделирования по учебникам Г. В. Дорофеева, Л. Г. Петерсон «Математика» для 5-6 классов;
5)     проанализировать учебники [6], [7], [11 – 17], [21], [22]      c точки зрения наличия элементов математического моделирования;
6)     экспериментально проверить основные положения исследования.
Для достижения целей работы, проверки гипотезы и решения поставленных выше задач были использованы следующие методы:
1)     изучение литературы по математике и методике преподавания математики по исследуемой теме;
2)     изучение психологической, педагогической, философской литературы по теме исследования;
3)     наблюдение за работой учащихся;
4)     опытное преподавание. 

Глава 1. Теоретические основы математического моделирования

1.1. Понятие модели. Моделирование. Классификация моделей и виды моделирования

Моделирование в настоящее время получило необычайно широкое применение во многих областях знаний: от философских и других гуманитарных разделов знаний до ядерной физики и других разделов физики, от  проблем радиотехники и электротехники до проблем механики и гидромеханики,  физиологии и биологии и т. д. моделирование - главный способ познания окружающего мира.
Вопросы моделирования рассматривались в работах философов (В. А. Штофа, И. Б. Новикова, Н. А. Уемова и других), специалистов по педагогике и психологии  (Л. М. Фрид­мана, В. В. Давыдова, Б. А. Глинского, С. И. Архангельского и других).
Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Моделируемый объект называется оригиналом, моделирующий - моделью.
Понятие «модель» возникло в процессе опытного изучения мира, а само слово «модель» произошло от латинских слов «modus», «modulus», означающих меру, образ, способ. Почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью [33] .
Существуют различные точки зрения на определение понятия «модель».
Так, например, В. А. Штоф под моделью понимает такую мысленно представляемую или материально реализованную систему, которая отображает и воспроизводит объект так, что ее изучение дает новую информацию об этом объекте [13].
            А. И. Уемов определяет модель как систему, исследование которой служит средством для получения информации о другой системе [29].
Чарльз Лейв и Джеймс Марч дают такое определение модели: «Модель – это упрощенная картина реального мира. Она обладает некоторыми, но не всеми свойствами реального мира. Она представляет собой множество взаимосвязанных предположений о мире. Модель проще тех явлений, которые она по замыслу отображает или объясняет» [20].
В. А. Поляков считает, что «модель – это идеальное формализованное представление системы и динамики ее поэтапного формирования. Модель должна интегрировано имитировать реальные задачи и ситуации, быть компактной, адекватно передавать смены состояний и должна совпадать с рассматриваемой задачей или ситуацией».
Большинство психологов под «моделью» понимают систему объектов или знаков, воспроизводящую некоторые существенные свойства системы-оригинала. Наличие отношения частичного подобия («гомоморфизм») позволяет использовать модель в качестве заместителя или представителя изучаемой системы.
Иногда под моделью понимают такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного  исследования типичные черты.
Вот некоторые примеры моделей:
1) Архитектор готовится построить здание невиданного доселе типа. Но прежде чем воздвигнуть его, он сооружает это здание из кубиков на столе, чтобы посмотреть, как оно будет выглядеть. Это модель.
2) На стене висит картина, изображающая бушующее море. Это модель [9].
  «Моделирование – это есть процесс использования моделей (оригинала) для изучения тех или иных свойств оригинала (преобразования оригинала) или замещения оригинала моделями в процессе какой-либо деятельности» (например, для преобразования арифметического выражения можно его компоненты временно обозначить буквами) [33].
«Моделирование - это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система:
1) находящаяся в некотором объективном соответствии с познаваемым объектом;
2) способная замещать его в определенных отношениях;
3) дающая при ее исследовании, в конечном счете, информацию о самом моделируемом объекте»
(три перечисленных признака по сути являются определяющими признаками модели) [25].
На основании перечисленного можем выделить следующие цели моделирования [3]:
1)     понимание устройства конкретной системы, ее структуры, свойств, законов развития и взаимодействия с окружающим миром;
2)     управление системой, определение наилучших способов управления при заданных целях и критериях;
3)     прогнозирование прямых и косвенных последствий реализации заданных способов и форм воздействия на систему.
Все три цели подразумевают в той или иной степени наличия механизма обратной связи, то есть необходима возможность не только переноса элементов, свойств и отношений моделируемой системы на моделирующую, но и наоборот.
Моделирование тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.
Научной  основой  моделирования служит теория аналогии, в которой основным понятием является - понятие аналогии - сходство объектов по их качественным и количественным признакам. Все эти виды объединяются понятием обобщенной аналогии - абстракцией. Аналогия выражает особого рода соответствие между сопоставляемыми объектами, между моделью и оригиналом [5].
Вообще, аналогия это среднее, опосредующее звено между моделью и объектом. Функция такого звена заключается:
а) в сопоставлении различных объектов, обнаружении и анализе объективного сходства определенных свойств, отношений, присущих этим объектам;
б) в операциях рассуждения и выводах по аналогии, то есть  в умозаключениях по аналогии.
Хотя в литературе отмечается неразрывная связь модели с аналогией, но «аналогия не есть модель». Неопределенности порождаются нечетким различием:     
а) аналогии как понятия выражающего фактическое отношение сходства между разными вещами, процессами, ситуациями, проблемами;
б) аналогии как особой логики умозаключения;
в) аналогии как эвристического метода познания;
г) аналогии как способа восприятия и осмысления информации;
д) аналогии как средства переноса  апробированных методов и идей из одной отрасли знания в другую, как средства построения и развития научной теории.
Вывод по аналогии включает интерпретацию информации, полученной исследованием модели. Особенность способа получения выводов по аналогии в логической литературе получила название традукция - перенос отношений (свойств, функций и т. д.) от одних предметов на другие. Традуктивный способ рассуждений используется при сопоставлении различных предметов по количеству, качеству, пространственному положению, временной характеристике, поведению, функциональным параметрам структуры и т. д.
Моделирование является многофункциональным, то есть оно используется самым различным образом для различных целей на различных уровнях (этапах)  исследования или преобразования.  В связи с этим  многовековая практика использования моделей породила обилие форм и типов моделей.
Модели классифицируют исходя из наиболее существенных признаков объектов. В литературе, посвященной философским аспектам моделирования, представлены различные классификационные признаки, по которым выделены различные типы моделей. Рассмотрим некоторые из них.
В. А. Штоф предлагает следующую классификацию моделей [33]:
1) по способу их построения (форма модели);
2) по качественной специфике (содержание модели).
По способу построения различают материальные и идеальные модели. Материальные модели, несмотря на то, что эти модели созданы человеком, существуют объективно. Их назначение специфическое – воспроизведение структуры, характера, протекания, сущности изучаемого процесса – отразить пространственные свойства – отразить динамику изучаемых процессов, зависимости и связи. 
Материальные модели неразрывно связаны с воображаемыми (прежде чем что-либо построить, необходимо иметь теоретическое представление, обоснование). Эти модели остаются мысленными даже в том случае, если они воплощены в какой-либо материальной форме. Большинство этих моделей не претендует на материальное воплощение.
В свою очередь материальные модели по форме делятся на:
·        образные (построенные из чувственно наглядных элементов);
·        знаковые (в этих моделях элементы отношения и свойства моделируемых явлений выражены при помощи определенных знаков);
·        смешанные (сочетающие свойства и образных, и знаковых моделей).
Достоинства данной классификации в том, что она дает хорошую основу для анализа двух основных функций модели:
- практической (в качестве орудия и средства научного эксперимента);
- теоретической (в качестве специфического образа действительности, в котором содержатся элементы логического и чувственного, абстрактного и конкретного, общего и единичного).
Другая классификация есть у Б. А. Глинского в его книге «Моделирование как метод научного исследования». Наряду с обычным делением моделей по способу их реализации, он разделяет модели и по характеру воспроизведения сторон оригинала на:
·        субстанциональные;
·        структурные;
·        функциональные;
·        смешанные.
Рассмотрим еще одну классификацию, предлагаемую Л. М. Фридманом [31]. С точки зрения степени наглядности он все модели разбивает на два класса:
·   материальные (вещественные, реальные); 
·   идеальные.
К материальным моделям относят такие, которые по­строены из каких-либо вещественных предметов, из ме­талла, дерева, стекла и других материалов. К ним так­же относят и живые существа, используемые для изуче­ния некоторых явлений или процессов. Все эти модели могут быть непосредственно чувственно познаны, ибо они существуют реально, объективно. Они представляют собой вещественный продукт человеческой деятельности.
Материальные модели, в свою очередь, можно разде­лить на статические (неподвижные) и динамические (действующие).
К первому виду автор классификации относит модели, геометрически подобные оригиналам. Эти модели передают лишь пространственные (геометрические) особенности оригиналов в определенном масштабе (например, макеты домов, за­стройки городов или сел, разного рода муляжи, модели геометрических фигур и тел, изготовленные из дерева, проволоки, стекла, пространственные модели молекул и кристаллов в химии, модели самолетов, кораблей и дру­гих машин и т. д.).
К динамическим (действующим) моделям относят та­кие, которые воспроизводят какие-то процессы, явления, Они могут быть физически подобны оригиналам и вос­производить моделируемые явления в каком-то масшта­бе. Например, для расчета проектируемой гидроэлектро­станции строят действующую модель реки и будущей плотины; модель будущего корабля позволяет в обыч­ной ванне изучить некоторые аспекты поведения проек­тируемого корабля в море или на реке и т. д.
    продолжение
1 2 3 4 5 6 7 8    

Добавить дипломную работу в свой блог или сайт
Удобная ссылка:

Скачать дипломную работу бесплатно
подобрать список литературы


Методика изучения элементов математического моделирования в курсе математики 5-6 классов


Постоянный url этой страницы:
Диплом Методика изучения элементов математического моделирования в курсе математики 5-6 классов


Разместите кнопку на своём сайте:
Рефераты
вверх страницы


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.