Исследование сопротивления вертикальным нагрузкам бипирамидальных свай


главная страница Рефераты Курсовые работы текст файлы добавьте реферат (спасибо :)Продать работу

поиск рефератов

Диссертация на тему Исследование сопротивления вертикальным нагрузкам бипирамидальных свай

скачать
похожие рефераты
подобные качественные рефераты

Размер: 135.47 кб.
Язык: русский
Разместил (а): Эль Асади Фади
27.08.2010
1 2 3 4 5    
МИНИСТЕРСТВО  ОБРАЗОВАНИЯ  УКРАИНЫ
ВИННИЦКИЙ  ГОСУДАРСТВЕННЫЙ  ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ
На  правах рукописи

Эль Асади Фади

УДК 624.154

Исследование  сопротивления  вертикальным

нагрузкам  бипирамидальных  свай
Специальность 8.0921 - «Строительство».
Диссертация на соискание ученой степени
магистра
                                                        Научный руководитель
                                                        доктор технических наук,
                                                        профессор  Друкованый М.Ф.
Винница - 1999

СОДЕРЖАНИЕ

Вступление ...................................................................................
Раздел 1. Аналитический обзор состояния вопроса .....................
        1.1. Применение коротких свай в промышленном и
              гражданском строительстве ...........................................
        1.2. Методы расчета сопротивления коротких 
              забивных свай ................................................................
        1.3. Применения численных методов расчета свай
              и свайных фундаментов ..................................................
        Задачи исследований ............................................................
Раздел 2. Применение МГЭ в расчетах сопротивления
             бипирамидальных свай .....................................................
        2.1. Общий алгоритм определения сопротивления
              бипирамидальных свай вертикальным нагрузкам с
              использованием МГЭ ......................................................
        2.2. Расчет бипирамидальных свай на ЭВМ ..........................
                2.2.1. Структура программы .........................................
                2.2.2. Дискретизация поверхности сваи .......................
                2.2.3. Формирование матрицы коэффициентов
                       влияния и свободных коэффициентов СЛАУ ...
                2.2.4. Определение напряжений на поверхности
                        сваи ......................................................................
                2.2.5. Определение общего сопротивления сваи ........
Раздел 3. Результаты теоретических исследований     
              сопротивления бипирамидальных свай ..........................
Общие выводы ..............................................................................
Список использованной литературы ..............................................
Приложение А…………………………………………………………….
Приложение Б……………………………………………………………..
Вступление
В промышленном и гражданском строительстве широко применяются фундаменты мелкого заложения, которые устраиваются на грунтах природной структуры. Вместе с тем, на основании сравнения технико-экономических показателей вариантов фундаментов мелкого заложения и фундаментов из коротких свай призматической формы выявлено, что свайные фундаменты экономичнее, если глубина заложения фундаментов на естественном основании больше 1,7 ... 2,0 м. В связи с этим, забивные сваи нашли широкое применение в жилищном строительстве. При возведении жилых зданий в большинстве областных центров Украины применение забивных свай составляет 80%, а фундаментов мелкого заложения 20%. Однако, сваи призматической формы при взаимодействии боковой поверхностью с окружающим грунтом, передают незначительные нагрузки. Силы трения мобилизуются не в полной мере, так как при забивке свай, в её верхней части, имеются зазоры на контакте боковой поверхности с грунтом. Кроме того, поверхность сваи не имеет угла наклона к вертикали, т. е. нет условий для формирования нормальной составляющей усилия, действующего на сваю.
Как показывает опыт применения пирамидальных свай, конструкции разработанной в Одесском инженерно-строительном институте, их эффективность выше призматических, за счет устранения зазора на контакте и создания нормальных сил при наклоне граней боковой поверхности к вертикали 7 - 11%.
Пирамидальные сваи имеют эффективное применение при возведении гражданских зданий и жилых домов, высотой до 5-и этажей, а также при возведении сельскохозяйственных объектов. Удельное сопротивление пирамидальных свай (т. е. отношение нагрузки к объему погруженной части сваи) в 2 ... 3 раза выше чем призматических свай.
Опыт применения призматических свай с забивными оголовками позволил выяснить, что несущая способность такой сваи возрастает не только за счет увеличения площади (забивного оголовка), но изменятся и условия работы грунта, примыкающего к боковой поверхности сваи, силы трения реализуются больше.
В этом направлении развития эффективной сваи выполнены начальные исследования, на основании которых разработана конструкция бипирамидальной сваи. Удельное сопротивление бипирамидальных свай в 2,0 ... 2,5 раза больше пирамидальных свай и в 4,0 ... 5,0 раз больше сопротивления призматических свай. Однако, широкое внедрение бипирамидальных свай в строительство сдерживается из-за отсутствия надежных методов расчета. В настоящее время, действительную работу свай и их оснований возможно решить путем использования усложненных расчетных схем взаимодействия системы "свая-основание". Для этого как правило используют современные численные методы: метод конечных разностей (МКР), метод конечных элементов (МКЭ) и метод граничных элементов (МГЭ).

Раздел 1. Аналитический обзор состояния вопроса
1.1. Применение коротких свай в промышленном и гражданском строительстве
В настоящее время в промышленном и гражданском строительстве находят применение свайные фундаменты из свай призматической, пирамидальной формы, а также сваи с забивными оголовками в верхней части.
Исследования с помощью различных методик, совместной работы свай призматической и цилиндрической формы с основаниями, позволили выявить характерные особенности их взаимодействия с основанием.
Наиболее важными факторами, которые оказывают существенное влияние на общее сопротивление по боковой поверхности свай вертикальным нагрузкам является снижение сопротивления по боковой поверхности сваи вследствие образования зазора между верхней частью сваи и грунтом и особенностей взаимодействия острия сваи с уплотненным грунтом. И хотя приведенные выше исследования имели конечный целью разработку расчетной модели сваи с учетом основных факторов, влияющих на несущую способность свай, их результаты могут быть положены в основу для совершенствования конструкции висячие сваи. Наиболее целесообразным направлением при этом будет иметь выбор такой формы сваи, которая способствовала бы устранению факторов, снижающих несущую способность сваи.
Как показывает дальнейший анализ, в настоящее время, фундаментами, которые в той или иной мере отвечают приведенным выше условиям являются:
- пирамидальные сваи, при погружении которых не возникает зазор вдоль боковых граней;
- сваи с забивными оголовками, которые также позволяют устранить возможность появления зазора вдоль боковой поверхности сваи и увеличить сопротивление сваи по боковой поверхности за счет взаимодействия оголовка сваи.
Исследования явлений, возникающих в грунте при забивке и осадке под нагрузкой коротких свай призматической и пирамидальной формы, позволили изучить факторы, которые отрицательно влияют на показатель совместной работы сваи и основания.
Эти факторы в основном имеют место в верхней части сваи и указывают на то, что в этой области возможности сопротивления грунта используются не полностью из-за конструктивных особенностей и состояния грунта.
Вышеуказанные недостатки можно попытаться устранить использовав такую конструкцию сваи, в которой грунт в верхней части в достаточной степени уплотнялся и участвовал в работе при загружении. В связи с этим, представляет интерес опыт применения и исследования работы свай с забивными уширениями в виде опорного кольца, шайбы, плиты, насадки, а также сваи с уширениями по стволу и вблизи острия.
Гнатенко-Гонта С.П. [1] отмечает, что применение забивной сваи с уширением позволяет производить уплотнение того или иного слоя грунта и может быть эффективно использовано для устранения просадочных свойств отдельных слоев грунта. При этом установлено, что в грунтах естественной влажности несущая способность сваи с утолщением в 1,8 - 2,2 раза больше чем у призматических. При замачивании основания осадки свай с местным уширением меньше чем призматических свай без утолщения.
Весьма полезным при строительстве опор моста оказалось применение утолщения по стволу призматической сваи (Коломийцев В.В.) с целью увеличения несущей способности за счет передачи нагрузки на более плотную прослойку грунта. Устройство уширения позволило увеличить несущую способность сваи на 30%. Автор отмечает, что для улучшения работы свай на горизонтальную нагрузку ниже уширения сваи предусмотрена рабочая часть сваи длиной 1,5 м.
Луга А.А. [2] отмечает, что в слабых илисто-глинистых грунтах, при большой толще этого слоя рационально применение свай с уширенной пятой с целью сокращения затрат времени на погружение, по сравнению с обычными длинными сваями и экономии материалов.
Исследования несущей способности сваи с забивной пятой, в значительном объеме, выполнены Колоколовым Н.М., Луга А.А., Платоновым Н.М., Рыбчинским В.П. [3]. Несущая способность свай, которые имели различную конструкцию уширения, вблизи острия, определялась в полевых условиях на основании 22 испытаний статической нагрузкой.
По результату опытов установлено, что сваи с уширенной пятой, при глубине погружения 7,5 м. и 9,2 м. обладают несущей способностью в 1,5 - 2.5 раза большей чем сваи без уширения. Наибольшее сопротивление вертикальной нагрузке (Р = 230 т) оказала железобетонная свая-оболочка диаметром 60 см. и диаметром забивной пяты 120 см., при опирании пяты на супесь полутвердой консистенции. В данном случае форма нижней части сваи, при значительных размерах поперечного сечения пяты позволила осуществить погружение сваи до глубины 9,2 м., что в известной степени связано с рациональным сочетанием размеров пяты конической формы и цилиндрического элемента с острием, которой находится ниже пяты сваи. Кроме того, это способствовало повышению несущей способности сваи.
Вместе с тем, при разработке уширений по стволу сваи и вблизи острия, вопрос выбора оптимальных соотношений размеров сваи и уширения, с точки зрения погружения сваи и ее работы под нагрузкой остается мало изученным.
Опыт применения призматических свай с забивными уширениями в верхней части ствола сваи (Платонов Ю.Н. [4]) показывает, что данная конструкция фундаментов дает наиболее экономичные решения при залегании однородных и прослойки плотных грунтов с дневной поверхности.
Наибольшее распространение получили сваи с забивными оголовками в жилищном строительстве при возведении пяти и девяти этажных домов [5], [6]. Платонов Ю.Н. [7] по результатам многочисленных полевых опытов, установил, что несущая способность свай с забивными оголовками в 2 - 3 раза больше чем несущая способность обычной призматической сваи равной длины. При этом, сваи с забивными оголовками менее материалоемки по сравнению с призматическими сваями, по расходу арматуры в 2 раза, по расходу бетона в 2 -3 раза. Сравнительные испытания  призматической сваи и сваи с забивным оголовком в лессовидных грунтах I типа позволили установить, что несущая способность сваи с уширением в верхней части увеличивается в 3,0 - 3,5 раза [6].
Свая с шайбой может применяться при строительстве подвесных дорог, путепроводов, опор линий электропередач или контактных сетей электрифицированных дорог и в качестве анкерного крепления береговых опор мостов. При работе свай с шайбой на горизонтальную нагрузку используется отпор уплотненного грунта и сопротивление сваи при этом в четыре раза больше, чем несущая способность обычной сваи (Грутман М.С. [8]).
Значительное повышение сопротивления свай с забивными оголовками объясняется тем, что при погружении забивного оголовка устраняется зазор, образовавшийся при забивке призматической сваи, грунт в верхней части дополнительно уплотняется, повышаются его прочностные характеристики. При загружении сваи с забивным оголовком изменяются условия распределения внешней нагрузки по сравнению с призматическими и пирамидальными сваями.
Исследования несущей способности сваи с забивными оголовками позволили выявить характер распределения усилий между конструктивными элементами при совместном испытании, а также каждого отдельного элемента в тех же грунтовых условиях.
По опытным данным Тарасова М.В. и др. [6], Грутмана М.С. и др. [9] несущая способность забивного уширения составляет 70 - 65% от общего сопротивления комплексной конструкции "свая + оголовок".
Нагрузка, которую воспринимает призматическая свая при совместном испытании сваи и оголовка на 10 - 15% больше, чем несущая способность отдельно испытанной сваи. Раздельное снятие нагрузок при совместном испытании сваи и оголовка, показывает, что увеличение несущей способности комплексной конструкции происходит не только за счет увеличения опорной площадки оголовка и повышения прочностных характеристик грунта. Грутман М.С. [8] полагает, что передача части нагрузки на грунт посредством шайбы способствует повышению несущей способности самой сваи.
Березанцев В.Г. отмечает, что вследствии увеличения напряжений в грунте под подошвой оголовка наблюдается повышение сил трения между сваей и грунтом.
Испытания статической нагрузкой оголовка, размещенного в выкопанном котловане и погруженного на заданную отметку [9] показали, что несущая способность оголовка повышается за счет уплотнения грунта. Грутман М.С., Циприанович И.В., Шнигель И.Д. [8] отмечают, что работа сваи с забивным уширением в верхней части качественно отличается от работы свай с низким ростверком, который не может воспринять существенной доли нагрузки, действующей на фундамент так как разница в деформативности грунта вокруг ростверка и вокруг оголовка сваи весьма существенна.
Подсчеты давлений, возникающих на уровне подошвы оголовка по результатам испытания с раздельным снятием нагрузки со свай и оголовка показывают, что они составляют 1000 - 1200 кПа, в то время как расчетные нагрузки для ленточных фундаментов в этих грунтах составляют 150 - 200 кПа.
В связи с тем, что сваи с забивными уширениями в верхней части являются новой и более сложной конструкцией, по сравнению с призматическими и пирамидальными сваями, технология их устройства окончательно не отработана и требует дальнейших разработок.
Платоновым Ю.Н., Малышевым В.П., Крытовым Е.К. [5] на основании трехлетнего наблюдения за осадками зданий, построенных на фундаментах из свай с забивными оголовками, установлено, что осадки носят затухающий характер и сделан вывод, о том, что разуплотнение грунта под оголовком со временем не происходит. Вместе с тем область применения свай с забивными уширениями в настоящее время сравнительно небольшая. Установлено, что усиление призматической сваи забивным оголовком, в случае если ее сопротивление меньше расчетного, практически оправдано во всех случаях, так как этот способ экономичнее по сравнению с другими вариантами усиления. При залегании близко от поверхности плотных грунтов рекомендуется использовать фундаменты из свай с забивными оголовками. Для долее массового применения и расширения области необходимы дальнейшие исследования по выбору рациональной конструкции в зависимости от ее формы для конкретных грунтовых условий. Недостаточно полно к настоящему времени исследован вопрос о затратах энергии на погружение и пути их сокращения.
Моргун А.И. [10 - 15] на основании обобщения опыта применения свай с забивными уширениями в верхней части сваи (с еще оголовка, шайбы, плиты, насадки) и своих комплексных полевых исследований совместной работы коротких свай, предложил новую форму сваи, которая состоит из двух пирамидальных элементов. При их соединении образуется пирамидальная свая с уширением в верхней части, поэтому свая получила название бипирамидальная. Бипирамидальные сваи могут изготавливаться в заводских условиях и затем погружаться как и забивные сваи традиционной формы существующими свайными агрегатами. Однако при такой технологии изготовления свай возрастают затраты на оснастку, в которой изготавливаются сваи. Поэтому предложен второй способ применения бипирамидальных свай. На заводе изготавливается металлический штамп с размерами и формой равными применяемых бипирамидальных свай. Штамп навешивается на экскаватор, трактор, которые имеют соответствующие стойку и направляющие. Изготовление фундаментов из бипирамидальных свай в этом случае осуществляется путем выштамповывания ложа, которое потом заполняется бетонной смесью.
    продолжение
1 2 3 4 5    

Добавить диссертацию в свой блог или сайт
Удобная ссылка:

Скачать диссертацию бесплатно
подобрать список литературы


Исследование сопротивления вертикальным нагрузкам бипирамидальных свай


Постоянный url этой страницы:
Диссертация Исследование сопротивления вертикальным нагрузкам бипирамидальных свай


Разместите кнопку на своём сайте:
Рефераты
вверх страницы


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.